
Torrus 2.0 Design Concept
Stanislav Sinyagin <ssinyagin@k-open.com>
July 24, 2008

1. Introduction
The Torrus software project has started back in 2002, mainly as an alternative to
Cricket. It took the best of Cricket's design ideas, yet rendering into a completely
new software. As of today, Cricket hasn't been updated for years. At the same time,
Torrus has grown into a powerful and flexible system, and it is used in many medium
or large-scale installations. However, some strong limitations in Torrus architecture
and in user-friendliness have drawn many users towards such software packages as
Cacti.

This document describes the thoughts and concepts behind a future, new-generation
software package. It's called Torrus 2.0, but there's no goal to extend today's Torrus,
and no intent for any backwards compatibility. If this project turns out good, this will
be a completely new software. It will incorporate the best experiences gained with
Torrus 1.0, and it will try to mitigate the problems and limitations of the older Torrus.

2. Limitations of Torrus 1.0

2.1. Database reliability
Because of the nature of Berkeley DB, all the database logic is done in the calling
process' context. This includes the shared memory regions used by cache and locking
subsystems. If a process crashes or terminates abnormally, it leaves the locks unre
leased, which may lead to a completely unusable database.

In case of any abnormal process termination, all the Torrus related processes have to
be stopped, and the database needs to be recovered. This does not happen too often
in stable environment, but it's quite annoying in experimental set-ups and also for the
new users.

2.2. Data hierarchy restrictions
The Torrus' database structure is a N-way tree. This brings some nice features, such
as parameter inheritance, quick recursive walking, and it reflects the object in a hi
erarchical way. However, there are several problems with it, as shown below.

It is very difficult to implement incremental updates in the current hierarchical data
structure. If you update some parameters at the parent level, all child nodes are af
fected. Thus the memory cache in all program elements should be updated. Also it is
unclear how to process deleted nodes. So, currently the only efficient way is to re-
compile the whole tree, once some changes need to be done in parts of it. In some
large installation, the whole compilation process may take up to an hour.

Also some network topologies are not convenient to model in the Torrus data model.
For example, if we want to monitor several dozens of thousands cable modems, they
would all lay in a single level of the tree, while they are not easy to group together.
This would render in the difficulty to navigate such a tree in the Web UI.

Torrus 2.0 Design Concept 2008-07-24 Page 1 of 5

2.3. Single-server architecture
Berkeley DB is not a networked DBMS, and thus it would require an additional layer
if we would need to build a multi-server Torrus installation. This might be required,
for example, in a large low-bandwidth network, where the remote collectors would
need to take data from the central database.

Currently all the Torrus processes have to stay within a single OS instance in order to
have access to the same database. It's still possible to build a distributed system, but
the data would have to be replicated manually between the systems.

2.4. Rigid and non-intuitive Web UI
The current Web UI is quite old-fashioned, if comparing to other systems. For exam
ple, the user cannot have his or her own customization settings. There's no simple
way to organize favorite data in a way that is convenient for the user. Any custom
graphs, such as traffic summaries, need some sophisticated XML editing in UNIX
command-line interface.

Also the access control is now implemented on a tree level. There are lots of occa
sions when the administrators want to provide access to a limited subset of graphs
only. The implementation of limited control also requires some sophisticated tuning of
XML files.

2.5. Status monitoring is not supported
Torrus is very robust and flexible in performance monitoring tasks, but there's no
room for such tasks as status or failure monitoring. Many users want some status re
ports alongside with performance graphs, and Torrus is not able to offer such func
tionality, because the current software architecture is oriented to periodic collecting
of numbers and counters only.

3. Torrus 2.0 design principles

3.1. RDBMS back end
The power of Berkeley DB is that every lookup operation is fast and inexpensive. An
other big advantage of Berkeley DB is the availability of cursors for walking through
large amounts of data.

Still, a standard SQL engine as a back end would bring lots of interesting benefits:
ability to separate the DB maintenance from application maintenance; networked and
distributed setup becomes easy to implement; system administrators' experience with
database maintenance tasks; and more.

At the same time, the data lookups are not any more as cheap as with Berkeley DB:
every query should be encoded in an SQL statement, transmitted, interpreted, then
the selected data should be accumulated and sent back to the client. Also it is ineffi
cient, and sometimes impossible, to build SELECT queries which would match dozens
of thousands of rows: this would render in huge delays when retrieving the data.

Torrus 2.0 Design Concept 2008-07-24 Page 2 of 5

Thus, the new Torrus data structure should meet several important criteria, as fol
lows:

• Any data object and its properties should be retrieved with a limited number of SE
LECT queries, ideally with one query.

• The data architecture should allow to walk through the whole data set, without hav
ing to retrieve huge arrays as query results.

• As the cursors are not part of the standard SQL syntax, and every RDBMS vendor
implements its own cursor operations, it is not acceptable to use cursors.

• The data structure and the whole database access layer should be vendor-agnostic,
and be compatible with as many RDBMS systems as possible. However, it will most
probably make use of transactions, therefore the choice of the RDBMS systems is
limited to those that support them (MySQL 5.x, Postgres, Oracle, ...).

3.2. Move most of site configuration to the database
The current Torrus implementation keeps most of site-specific options in a Perl con
figuration file. Every time when such options are changed, the Torrus processes need
to be restarted.

In the new Torrus, only a few parameters are allowed in configuration files, and the
rest should be moved to the database. Also the database should present the configu
ration objects the same way as any other data objects.

The following parameters are allowed to be configurable from local files:

• Database connection parameters, such as database host, user name, and password.

• Site identification parameters. In a multi-server installation, each OS instance
needs to be uniquely identified.

• Local file storage parameters, such as the directory path for RRD files.

3.3. Separate data from its visual presentation
In Torrus 1.0, the presentation of the data was bound to the data itself: the data hier
archy was identical to the visual hierarchy in the UI, and also the presentation pa
rameters were the integral part of the data.

The new Torrus data model should set the separation between the visual presentation
and the data itself. The data should describe itself in order to identify its type and its
relation to other data elements, but the visual parameters should be managed by in
dependent structures.

3.4. Update instead of “erase and re-build”
The tree structure of Torrus 1.0 has made it difficult to make the updates to the data
without re-building the whole tree.

In Torrus 2.0 all data should be updatable. Existing objects should be easy to find and
modify, and new objects should be easy to add to the hierarchy (for example, inter
faces of a router may vary in number between the discovery runs).

Torrus 2.0 Design Concept 2008-07-24 Page 3 of 5

Obsolete objects are not deleted, but set to inactive, and deleted later after a certain
configurable timeout period.

3.5. Less dependent on RRDtool
The new Torrus will be able to collect the status and failure information from the
monitored devices. This data is not suitable for RRDtool, and needs to be stored in
some other way, such as in an RDBMS repository. Also the performance monitoring
results, such as traditional counter values, may require other than RRDtool storage.

Currently Torrus already supports various storage types, such as RDBMS or flat files.
Still, many parts of it are RRD-centric. For example, the Web UI and the monitor dae
mon are completely RRD-dependent.

The new Torrus core should be designed as storage-agnostic, still taking most of ad
vantage from RRDtool as a means for storing and displaying of periodically collected
data.

3.6. Web 2.0 User Interface
The UI of the new Torrus should meet a number of criteria:

• Modular structure, allowing to display various types of data: graphs, events, nu
merical reports, configuration options, administrative tasks, and so on.

• Customizable layout.

• Ability to tag the graphs, group them as needed, set favorites, add descriptions or
notes, and so on.

• Granular access control.

• Easy navigation on the graph: selecting the time span, zooming, etc.

• Easy combining of several data sources on a single graph.

• Easy selection of aggregation functions on long-term graphs.

• Use Ajax where needed.

4. Requirements to the new data model

4.1. Data abstraction
Same way as in Torrus 1.0, the data model should be abstract from the type of the
data source. It must not contain such terms as “host” or “interface”. It should be flex
ible enough to be able to describe hosts and interfaces, and also any other type of
data. The data elements should allow some hierarchical grouping, so that they would
model various complex sets of data.

Some examples of data grouping and hierarchy follow:

• SNMP Interface counters, such as in- and output octets, errors, discards, etc., are
grouped into the interface counters group. Interfaces, along with other types of
SNMP objects, are grouped together and model an SNMP host.

Torrus 2.0 Design Concept 2008-07-24 Page 4 of 5

• The Netflow collector has a set of rules for aggregating and filtering the Netflow
data. Each such rule generates a number of counters.

• The Apache log analyzer generates the hit statistics for a number of URI's inside a
website. These URI's may form a hierarchy that reflects the logics of the website.

4.2. Fast bulky retrieval
The collector is the most time-critical component of Torrus, as its primary job is to
collect the data in accordance to the schedule. In case of SNMP collection, a single
instance of the collector may periodically query 100K or more SNMP objects from
few thousand SNMP agents. When the collector process starts, it has to retrieve all
the relevant data elements from the database without delay. The collector instance
should receive only the objects that are related to this particular instance.

In case of SNMP collector, it would be advantageous to retrieve the data elements as
hierarchical groups, so that the hierarchy would automatically determine the group
ing of the data inside the collector memory. Also such grouping information can re
duce the amount of data (for example, host+community are transmitted from the
database only once for the host, and not every time for every OID), and also help in
avoiding large SQL result sets.

4.3. Multi-purpose data
As the data is persistent in the database, it makes sense to keep the SNMP discovery
instructions as attributes of the data objects representing the hosts for the collector.

Another practical use would be the network topology information that is stored along
side the hosts and interfaces. Such metadata would not be used by any component of
Torrus, but it could be built and used by external third-party applications.

4.4. Partial Updates
The data model should group the object attributes in a way that would allow easy up
dates of sets of attributes. For example, the SNMP discovery engine would update
the attributes that are relevant to the SNMP collector, leaving other attributes un
touched.

4.5. Universal use
Ideally the data model would allow to store some data types which were not consid
ered as data in Torrus 1.0. This includes the configuration options from torrus-con
fig.pl; UI users, groups and permissions; presentation parameters for various types of
graphs, etc.

5. The new data model
To be continued...

Torrus 2.0 Design Concept 2008-07-24 Page 5 of 5

	1.Introduction
	2.Limitations of Torrus 1.0
	2.1.Database reliability
	2.2.Data hierarchy restrictions
	2.3.Single-server architecture
	2.4.Rigid and non-intuitive Web UI
	2.5.Status monitoring is not supported

	3.Torrus 2.0 design principles
	3.1.RDBMS back end
	3.2.Move most of site configuration to the database
	3.3.Separate data from its visual presentation
	3.4.Update instead of “erase and re-build”
	3.5.Less dependent on RRDtool
	3.6.Web 2.0 User Interface

	4.Requirements to the new data model
	4.1.Data abstraction
	4.2.Fast bulky retrieval
	4.3.Multi-purpose data
	4.4.Partial Updates
	4.5.Universal use

	5.The new data model

